
FREE!

NLP for me

Part 2 - Data Acquisition and Preprocessing

Monday, October 14th, 2024

PWYC Microcourse in Natural Language Processing
October 2024

nlpfor.me

https://www.nlpfromscratch.com
http://nlpfor.me

Agenda

Front Matter

Data Acquisition
● Data Sources and Storage
● Getting text from online sources

01

02

03 Preprocessing Text
● Tokenization
● Normalization
● Vectorization

https://www.nlpfromscratch.com

Data
Acquisition

https://www.nlpfromscratch.com

First we note some particulars about how text data differs
from other kinds, for example, much of that present in
relational database systems (RDBMS).

Though they do not have hard-and-fast definitions,
structured data usually refers to anything with a set number
of columns of particular data types - so anything you could
put into Excel.

On the other hand, unstructured data refers to other data
types: images, video, audio, specialty file formats, etc. and
what we are interested in, free-form text.

The way to transform data from unstructured to structured
varies; we'll see that turning text data into that with columns
and rows is a requirement before performing machine
learning but not for storage.

Structured Data

Unstructured Data

Structured and Unstructured Data

https://www.nlpfromscratch.com

Data Acquisition

Data acquisition refers to, unsurprisingly,
acquiring the data with which we wish to
work.

In addition to the data itself, this usually also
involves considering necessary other
processes, tools, and platforms for working
with the data - e.g. consolidating different
data sources and how the result will be
loaded and stored.

When working with relational databases (i.e. SQL) this is
usually put in terms of the Extract, Load, and Transform
processes:

● Extract: Getting data from source systems

● Transform: Consolidating, aggregating, filtering,

cleaning

● Load: Put the data into a destination system (database)

This exists analogously for text data, where we might be
extracting text from customer invoices or scraping from web
pages, transforming or cleaning it in some way, and then
loading into a type of database that can store text.

EXTRACT TRANSFORM LOAD

https://www.nlpfromscratch.com

Storing Text Data

While traditional databases can store
text, there are also specialized data
platforms for doing so.

Examples of potential storage solutions
are depicted on the right.

In this course, we will be working with smaller datasets
stored in files which can be loaded directly into memory in
Python.

Cloud Object Storage
AWS S3, Google Cloud

Storage, Azure Blob

Relational Databases
PostgreSQL, MySQL,

Microsoft SQL.

Document Databases
ElasticSearch,

MongoDB, Redis

https://www.nlpfromscratch.com

Internal Data
Traditional In-House

Websites and APIs
Online Sources

User Data
Constantly Generated

Organizations will have large

amounts of data already stored,

much of which may take the

form of text.

This can include things like call

transcripts, invoices, customer

feedback, documentation, and

more.

Supplementary data may be

acquired from web pages or made

available via web services (APIs).

This usually requires writing code

or using software or a third-party

service designed for this task.

Most organizations' users will be

generating a constant stream of

data through interactions via phone

calls, websites, and apps.

These may be stored internally, with

another provider, or may even have

to be acquired from another

platform.

Data Sources for NLP

https://www.nlpfromscratch.com

A web service is an application running on a
computer which can provide data or perform
transactions when you interact with over the wire.

The machine hosting the service is referred to as a
server and a machine interacting with it a client.

Web Services and APIs
Technically, an Application Programming Interface
(API) is the software enabling communication

between two computers, allowing them to exchange

information. There are many different kinds of APIs,

with a modern and ubiquitous standard being the

Representational state transfer, more commonly

referred to as REST.

Though technically the server machine and software

running on it is a web service, colloquially they are

often also referred to in their entirety as an API. (e.g.
"I got my data from the XYZ Bank REST API")

https://www.nlpfromscratch.com
https://en.wikipedia.org/wiki/Representational_state_transfer

HTTP Requests
HTTP requests are what your web browser makes
when you navigate to a given URL. Web pages are
hosted by web servers and requests are made by
client machines (for example, your laptop).

A server machine does not just have to serve web
pages as part of a web service, it can also provide
other services, such as returning data from a
database or performing transactions.

There are a number of HTTP status codes that are
returned as part of the response to a request. Some
commonly encountered ones are detailed on the
right.

404

200

503

"OK" - The request succeeded
and the response was
returned successfully.

"Unavailable" - The server is
unable to return a response to
the request (usually because
the server is down)

"Not Found" - There is nothing
at the path where the request
was made (resource does not
exist)

https://www.nlpfromscratch.com

Client Server
Client initiates request

Server returns response
Uses software to make

requests over the wire

(web browser, other

program or with code)

Hosts web service via

REST or other standard,

performs actions and/or

returns data

Client-Server Model

https://www.nlpfromscratch.com

There are a number of helpful libraries in
Python for collecting data in this way,
which are typically used in conjunction.

We will focus on the two on the left for
getting data from APIs and scraping web
sites.

Python Libraries for
Data Acquisition

Beautiful Soup - A library for

parsing semi-structured data,

such as that in HTML (web

pages)

Requests - A python library that

allows making HTTP requests to

online services

Scrapy - A python library for

advanced web scraping and

building web crawlers (spiders)

Selenium - Web automation

framework for advanced web

scraping tasks (JS, auth, etc.)

with Python connector

https://www.nlpfromscratch.com
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://requests.readthedocs.io/en/latest/
https://scrapy.org/
https://www.selenium.dev/
https://pypi.org/project/requests/

The requests library

requests is a Python library that

allows making HTTP requests

programmatically.

One of the nice things about the

requests library is that it is very simple

code to write and very well documented.

https://pypi.org/project/requests/

https://www.nlpfromscratch.com
https://pypi.org/project/requests/
https://pypi.org/project/requests/
https://pypi.org/project/requests/

Making your first request
In requests , getting data from
a web service, whether a web
server or REST API, is as simple
as a few lines of code.

On the right, we make a request
to get Google's homepage, and
our response is the HTML code
that our browser would render.

In the Jupyter notebook for this
part of the course, we will go
through an example in more
detail, getting data from an API.

https://www.nlpfromscratch.com

Web scraping
Web scraping refers to the process of gathering data programmatically from web sites.

Since most web pages are intended to be rendered by a browser, performing web scraping usually
requires a fair bit of investigative and trial-and-error kinds of work to extract the desired data,
depending on the page design.

In Python, our two step process will be getting the page source using requests , and then
extracting the desired data from the page structured using Beautiful Soup.

https://www.nlpfromscratch.com

Extracting text
data from websites

Getting the exact data from a website
usually requires some investigation into
the page's structure using your
browser's web developer tools (Chrome,
Firefox, Edge)

While a background in web development
is not required, some familiarity with
HTML is helpful.
We will see a detailed example in the
Jupyter notebook.

https://www.nlpfromscratch.com
https://developer.chrome.com/docs/devtools/dom/
https://firefox-source-docs.mozilla.org/devtools-user/
https://learn.microsoft.com/en-us/microsoft-edge/devtools-guide-chromium/css/inspect

Preprocessing
Text

https://www.nlpfromscratch.com

Talking About Text

Natural language processing has fairly
specific terminology of its own.

In NLP, the term document refers to a
single unit of collected text: this could
be something as large as a book, or
something as short as a single sentence
movie review or tweet.

The term corpus (from the Latin for
body) refers to a collection of many
documents comprising an entire
dataset.

The same preprocessing steps must be
applied to all documents in a given
corpus to ensure consistency.

📖

📚📚📚📚📚
📚📚📚📚📚

Document

Corpus

https://www.nlpfromscratch.com

What is
Preprocessing?

BIAS ALERT: The vast majority of the NLP is based on
working with the English language.

Though there are approaches for other languages, and
some preprocessing techniques work equally well for
both English and other languages based upon the Latin
alphabet, working with non-English text is typically
categorized under the domain of multilingual NLP or
machine translation applications.

Preprocessing refers to cleaning and

transforming the original text data to

structured data to make it suitable for

machine learning (or other uses).

While some preprocessing steps may

need to be considered carefully as

they may be specific to your use case,

there are general approaches that

work well and are standard.

https://www.nlpfromscratch.com

Preprocessing Text
in Python

Base python has built-in string

manipulation capabilities and is able to

work with regular expressions.

The Natural Language Toolkit (NLTK) is a

fully-featured NLP library and de facto

standard for such in python, essential for

many tasks including preprocessing.

Scikit-learn (sklearn) is the standard open

source machine learning library in Python

and includes modules for preprocessing text

in addition to machine learning.

A number of different options exist for
preprocessing text data in python.

https://www.nlpfromscratch.com
https://en.wikipedia.org/wiki/Regular_expression

Preprocessing Steps in NLP

Tokenization Vectorization

Break free-form text

documents down into

tokens: constituent

units of language

(usually words)

Apply techniques to

reduce the noise and

variance in the

language data and

standardize

Convert text data to

numeric features:

structured data

suitable for machine

learning or analytics

Normalization

https://www.nlpfromscratch.com

Tokenization
There are many different ways to tokenize. In its simplest application, tokenizing could be breaking a
string of text into words separated by whitespace.

Different applications may require more sophisticated methods of tokenization or use-case specific
ones, for example, OpenAI has their own customer tokenizer and there is a class for tokenizing
tweets in nltk.

Hugging Face has a series of videos breaking down different tokenization approaches here.

https://www.nlpfromscratch.com
https://platform.openai.com/tokenizer
https://www.nltk.org/api/nltk.tokenize.casual.html
https://www.nltk.org/api/nltk.tokenize.casual.html
https://huggingface.co/docs/transformers/tokenizer_summary

Normalization is the standardization of the text data to remove unwanted variation and noise, and
address any possible issues the data.

This usually includes steps such as:

● Removing extra whitespace

● Removing punctuation

● Expanding contractions

● Standardizing case

● Addressing spelling errors

There are also separate important steps which may be performed as part of normalization: removing
stop words, stemming, and lemmatization.

Normalization

https://www.nlpfromscratch.com

Stop words

Stop words are words that are removed as
they are not important in the analysis. In
standard practice, these are usually just
the syntactic "glue" which holds together
language, and in English includes terms
like the, and, or, is, and so on.

These are removed as they don't contain
any particular meaning on their own, and
so looking at language as data, we are
generally only interested in words like
nouns, adjectives, and verbs.

NLTK includes lists of stop words in
different languages, as seen here.

https://www.nlpfromscratch.com

Stemming
Stemming is a rules-based method for normalizing text by collapsing tokens which have the same
meaning but different forms by truncation, for example, conjugated verbs or plural forms of nouns.

Stemming is not perfect - if one of our rules was to remove -ing suffixes, this would successfully
convert falling to fall, but running would become runn.

Different methods of stemming exist based upon rules and heuristics which have been historically
developed.

In NLTK, the Porter Stemmer and Snowball stemmer are commonly used.

running falling

https://www.nlpfromscratch.com
https://en.wikipedia.org/wiki/Stemming#Algorithms
https://www.nltk.org/howto/stem.html

Lemmatization

Lemmatization seeks to resolve tokens
which are part of the same concept
without the shortcomings of stemming.

It uses a more complex rules-based
approach, which requires keeping track
of a vocabulary of all the related forms
of a word and their base or root token.

goosegeese

runran

https://www.nlpfromscratch.com

Vectorization

Vectorizing text is the important final

step where we turn the unstructured

text data into structured data with rows,

columns, and numeric values, that can be

used for machine learning.

token1 token2 token3 …

doc1

doc2

doc3

…

Document-Term
Matrix (DTM)

There are different approaches to vectorization, but traditional
approaches create the very important document-term matrix, so
called because the observations of collected text (documents) lie
along the rows and the tokens (terms) become our features.

https://www.nlpfromscratch.com

Vectorization Methods
So what goes into the matrix? How do we quantify the text? There are a number of different methods.

Binary (One-Hot) Encoding

Count Vectorization

Term Frequency-Inverse
Document Frequency

Embeddings

A binary flag (0/1) for if the term appears
in each document. This is generally less
common in use.

A raw count of the number of times each
token appears per document. That's it!

There is no single "right" answer - though embeddings are state of the art at the cost of additional complexity.

What proportion of all tokens each token
is for each document, divided by the log of
the number of documents in which it
appears in the corpus.

Advanced methods that learn statistical
representations of words based on a
given corpus.

TF-IDF

https://www.nlpfromscratch.com

FREE!

End of Part 2

Part 2 - Data Acquisition and Preprocessing

Monday, October 7th, 2024

NLPfor.me
PWYC Microcourse in Natural Language Processing

October 2024

nlpfor.me

https://www.nlpfromscratch.com
http://nlpfor.me
http://nlpfor.me

